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Abstract: 

Head gesture recognition has emerged as a critical area of research 

within human-computer interaction, driven by the evolution of sensor 

technology and the demand for natural, intuitive control systems. 

Historically, early systems relied on rule-based or thresholdbased 

methods to interpret head movements from inertial sensor data, but 

these traditional approaches often suffer from high sensitivity to noise, 

rigid feature extraction, and limited adaptability to complex or 

imbalanced datasets. These limitations underscore the problem 

definition: accurately and robustly recognizing head gestures in real- 

world scenarios remains challenging, particularly when sensor data are 

noisy or when gesture classes are unevenly distributed. Motivated by 

the need for enhanced accuracy and scalability, our proposed system 

integrates advanced data preprocessing techniques—including 

cleaning and SMOTE-based balancing—with a multi-model machine 

learning framework. This framework encompasses a baseline 

Perceptron classifier, an improved MLP classifier, and a hybrid model 

combining a deep neural network, i.e., DenseNet for feature extraction 

with a Random Forest classifier (RFC) for ensemble-based decision 

making. The system’s modular architecture, further enhanced by a 

user-friendly Tkinter GUI, not only facilitates robust model training 

and real-time predictions but also demonstrates significant 

improvements over traditional methods in terms of performance 

metrics and overall reliability. This comprehensive approach 

highlights the significance of our work in advancing head gesture 

recognition, paving the way for practical applications in accessibility, 

automotive safety, and interactive control systems. 
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1. INTRODUCTION 
 

Head gesture recognition has become an essential aspect of human- 

computer interaction (HCI). Early systems primarily used cameras and 

specialized sensors to track movements. However, with the 

introduction of MEMS technology, compact and cost-effective inertial 

sensors like accelerometers and gyroscopes enabled more reliable head 

movement tracking... 

 

 
As industries embrace smart factories, there is a growing demand for 

intuitive and adaptive control methods to enhance automation and 

efficiency. Gesture-based remote control and teleoperation have 

become significant, requiring high accuracy and responsiveness for 

precise manipulator control in dynamic environments. Various sensor 

technologies, enabling real-time interpretation of gestures. 

Advancements in machine learning have further enhanced gesture 

recognition. Techniques like neural networks and feature extraction 

allow for better interpretation of subtle head movements. SMOTE 

helps address data imbalances, improving model reliability. 

These developments have transitioned gesture recognition from an 

experimental field to real-world applications. It is now used in assistive 

technology, virtual reality, and automotive safety systems. 

2. LITERATURE SURVEY 

First, we examine research cases using vision sensors, such as RGB 

cameras and Kinect. According to the study by C Nuzzi et al. The data 

of 5 classes collected through the RGB camera were classified with an 

accuracy of 92.6% using the R-CNN algorithm. However, they 

reported limitations, such as light reflection, boundary extraction of 

background and hand, and limited working area of camera FOV. To 

overcome these limitations of RGB cameras, W Fang et al. Proposed a 

gesture recognition method for 37 hand gestures with CNN and 

DCGAN. They collected 37 hand gestures under various 

environmental conditions using artificial light sources. D Jiang et al. 

Classified 24 hand gestures collected with Kinect with an accuracy of 

93.63% through CNN. However, like the RGB sensor, limited FOV 

and low illuminance are also not allowed in the Kinect. Vision sensor- 

based gesture recognition methods are frequently employed for remote 

control of manipulators. One study utilized Kinect V2 and Open Pose 

to develop a real-time human–robot interaction framework for robot 

teaching through hand gestures, incorporating a background invariant 

robust hand gesture detector. The researchers employed a pre-trained 

state-of-the-art convolutional neural network (CNN), Inception V3, 

alongside the Open Sign dataset to classify 10 hand gestures. With 

98.9% accuracy in hand gesture recognition, they demonstrated 

gesture-based telemanipulation using an RGB camera. However, this 

approach requires users to memorize perceivable gestures for the 

robot, and the vision sensor’s depth range constrains its capabilities. In 

addition, the system has only been tested indoors and may struggle in 

bright light due to the resulting contrast in RGB images. In cases where 

Kinect’s skeletal information is used, researchers have successfully 

controlled the speed and steering of a mobile robot and the position of 

a 5-axis manipulator. Nevertheless, performance and usability issues 

often arise in research using vision sensors, such as limited field of 

view (FOV), light reflection, occlusion, and illumination. As a result, 

this approach is considered nearly infeasible in industrial settings, 

where operators must stand and perform gestures while facing the 

monitor screen. EMG sensors limited controllable degrees of freedom 

(DOFs) and dependency on human kinematic models make them 

unsuitable for telemanipulation applications when used alone. Vogel 

combined sEMG with Vicon motion-capture camera systems to record 

EMG signals from the wrist and pose information to remotely control 

the DLR LWR-III manipulator and train machine learning models. 

Furthermore, to minimize occlusion effects in gesture-based 

telemanipulation using only Kinect, an approach that combined hand 

posture recognition based on sEMG-derived biofeedback information 

was introduced. In a study employing IMU and EMG sensors, six static 

hand motions were recognized and used to control a robot arm by 
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mapping each motion to the corresponding robot arm movement. In 

the study of IMU-based gesture recognition, six hand gestures were 

recognized at an average accuracy of 81.6%, and the telemanipulation 

was achieved only with the predefined motion mapped for each 

gesture. In the study using the operator’s skeletal kinematic model, 

omnidirectional manipulation was achieved by estimating the hand 

motion trajectory, even though challenges persisted in the uncertainties 

of pose estimation and differentiating between unintentional and 

intentional motions. However, in most cases of IMU-based motion 

recognition, if the operator’s initial body alignment determined just 

after the sensor calibration does not hold, the accuracy of dynamic 

gesture recognition will drop drastically. In a study for human motion 

tracking using a set of wearable IMU sensors, they did not use a body- 

fixed reference frame, but an earth-fixed frame for calculating the joint 

position between the body segments with considering the reference 

method from the biomechanics domain. Thus, in this case, the time- 

variant body heading direction does not matter because the angle of 

the human body, an essential feature of the recognition model, is not 

less affected by the change of the body-heading orientation. To apply 

this method, the segment axes should be determined segment-by- 

segment through predefined joint movements, such as pronation– 

supination for the upper-limb joint and flexion–extension for the 

lower-limb joint. Moreover, the relation of segments with the global 

reference frame should be identified after estimating the relative pose 

of the sensor to the segment. Then, the joint position can be calculated 

by two connecting segments. It can be said that this method should be 

time-consuming and inconvenient, as the number of the joints of 

interest is increased. There has been another approach to securing 

consistent reference inertial measurement frames in IMU sensor-based 

human motion analysis of lower-limb and upper-limb 

3. PROPOSED METHODOLOGY 

The proposed technology for detecting health anomalies in senior 

citizens uses a smart wearable IoT device powered by an ESP32 

microcontroller. The ESP32 is chosen for its low power consumption, 

Wi-Fi, and Bluetooth connectivity, making it ideal for continuous 

health monitoring. The device integrates sensors to track heart rate 

(ECG), blood pressure, temperature, SpO2, and movement 

(accelerometer for fall detection). The collected data is processed using 

noise filtering and anomaly detection algorithms. Basic threshold- 

based detection triggers alerts if values exceed safe limits, while 

machine learning techniques can identify patterns indicating 

conditions like arrhythmias or hypertension. 
 

Figure 1: Proposed System 

The proposed methodology typically includes the following key 

features: 

• DNN for Feature Extraction: A deep neural network 

(DNN) learns hierarchical patterns from raw input data 

using multiple dense layers with ReLU activation. The final 

SoftMax layer is omitted for feature extraction. 

• DNN Architecture: The network has four hidden layers— 

128, 64, 32, and 16 neurons—each refining the data. A fifth 

layer (8 neurons, SoftMax) is used only in standalone 

classification. 

• Feature Extraction Process: Instead of using the final 

SoftMax output, features from the 16-neuron layer (or 

combined hidden layers) are extracted for further 

processing. 

• Random Forest Classifier (RFC): The extracted features 

are fed into an RFC, an ensemble learning method that 

improves prediction accuracy and robustness. 

• RFC Benefits: By combining multiple decision trees, RFC 

reduces overfitting and handles noisy or imbalanced data 

better than using DNN alone. 

• Hybrid Model Advantage: The combination of DNN’s 

feature extraction and RFC’s ensemble learning results in a 

more accurate and reliable head gesture recognition system. 

 

 
Applications: 

• Assistive Technology – Enables communication for 

individuals with motor disabilities or speech impairments. 

• Gaming and Virtual Reality – Allows users to control and 

navigate immersive environments using head gestures. 

• Automotive Systems – Enhances driver safety by detecting 

alertness and fatigue. 

• Smart Home and IoT –  Enables hands-free  control of 

appliances, lighting, and other connected devices. 

• Healthcare – Assists in rehabilitation and physical therapy 

by tracking head movements. 

• Robotics – Improves human-robot interaction and enables 

intuitive control of robots and drone 

Advantages: 

The Smart Wearable IoT Device for Detecting Health Anomalies in 

Senior Citizens Using ESP32 offers several advantages, making it a 

valuable solution for various healthcare applications: 

 
• Enhanced Accessibility – Provides an intuitive interface 

for users with mobility impairments. 

• Improved Human-Computer Interaction (HCI) – Offers 

an alternative to traditional input methods like keyboards 

and touchscreens. 

• Robust Performance – Uses advanced data preprocessing, 

SMOTE balancing, and a hybrid machine learning model 

for high accuracy. 

• Real-Time Processing – Ensures fast and efficient 

recognition of head gestures. 

• Scalability and Adaptability – Modular design allows 
easy integration into various applications. 

• Noise Resilience – Combines DenseNet for feature 

extraction and Random Forest for classification to improve 

accuracy in noisy conditions 

• Hands-Free Operation – Allows users to interact with 

systems without physical contact, making it ideal for 

environments where hands-free control is necessary, such 

as healthcare and industrial automation. 

•  Energy Efficiency – The system is designed to run 

efficiently on embedded platforms, making it suitable for 

portable and low-power devices 
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4. EXPERIMENTAL ANALYSIS 

Fig. 2 shows the main graphical user interface (GUI) of the system as 

it launches. The interface is designed with a modern, user-friendly 

layout featuring a clear title and organized buttons for various 

operations such as dataset upload, preprocessing, model training, 

prediction, and visualization. The GUI provides a central console (text 

area) where system messages, logs, and outputs are displayed, 

allowing users to easily follow the workflow and interact with the 

system. 

In Fig.3, the GUI displays the outcome immediately after a dataset has 

been uploaded. The file path or name is shown in the text console along 

with the first few rows (a preview) of the CSV dataset. This visual 

confirmation ensures that the correct file is loaded and that the data 

(comprising sensor readings and gesture labels) is ready for further 

preprocessing. 

 

 

 

 
Fig.2: GUI of proposed head gesture recognition system. 

 

Fig.3: GUI of proposed head gesture recognition system after 

uploading the dataset. 

Fig. 4 presents a count plot generated using the dataset’s gesture labels 

(referred to as “Miscare” categories). The plot visually represents the 

distribution of different gestures within the dataset. Each bar 

corresponds to a specific gesture (e.g., “MoveRight_2s”, 

“MoveLeft_2s”), with the bar height indicating the frequency of 

occurrence. This visualization is crucial for identifying any class 

imbalances that might affect model performance and is typically 

generated after the preprocessing stage. 
 

Fig. 4: Count plot vs miscare categories. 
 

Fig. 5: GUI of proposed head gesture recognition system after 

performing preprocessing operation. 

After data preprocessing—which includes cleaning missing values, 

normalization, and balancing using SMOTE—the GUI updates to 

show detailed preprocessing logs and information. Fig. 5 illustrates 

that the dataset has been refined, with key statistics (such as the 

dimensions of the training and testing sets) and a preview of the 

transformed data displayed in the text console. It confirms that the data 

is now better suited for effective feature extraction and model training. 

Fig. 6 depicts the GUI after the system has trained the Perceptron 

classifier. The text console displays messages indicating that the model 

has either been loaded (if previously saved) or trained from scratch. It 

also shows training results, including performance metrics like 

accuracy, precision, recall, and F1-score, providing immediate 

feedback on the classifier’s performance on the training and testing 

data. 

The confusion matrix generated for the Perceptron classifier is shown 

in Fig.7 The matrix is typically rendered as a heatmap where rows 

represent the actual gesture classes and columns represent the 

predicted classes. The numbers in each cell highlight the count of 

correct and misclassified instances, offering a detailed view of where 

the classifier may be confusing one gesture for another. 

Fig. 8 shows the Receiver Operating Characteristic (ROC) curve for 

the Perceptron classifier. The ROC curve plots the true positive rate 

against the false positive rate at various threshold settings. It provides 

an aggregate measure of performance across all classification 

thresholds, often accompanied by the area under the curve (AUC) 

value. This graph is useful for assessing the classifier's discriminative 

ability. 
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In Fig. 9, the GUI is updated to reflect the results of training an MLP 

classifier. Similar to the Perceptron training GUI, the text area displays 

logs and performance metrics for the MLP model. This section 

highlights improvements in handling non-linear patterns in the data as 

compared to the simpler Perceptron model, indicating the benefits of 

the hidden layers in the MLP. 

The confusion matrix for the MLP classifier is depicted in Fig.10. As 

with the Perceptron, this heatmap shows the distribution of correct and 

incorrect predictions across all gesture classes. A comparison with 

Fig.7 can illustrate whether the MLP reduces misclassifications and 

improves overall accuracy in recognizing head gestures. 

Fig. 11 illustrates the performance of the MLP classifier. By comparing 

the ROC curves (and corresponding AUC values) of the MLP with 

those of the Perceptron (Fig.8), one can evaluate the relative 

improvement in the model’s ability to distinguish between different 

gesture classes. 
 

Fig. 6: GUI of proposed head gesture recognition system after 

applying model building and training using perceptron classifier. 

 

 

Fig. 7: Confusion matrix of perceptron classifier. 

 

 
 

Fig. 8: ROC graph obtained using perceptron classifier. 
 

Fig. 9: GUI of proposed head gesture recognition system after 

applying model building and training using MLP classifier. 
 

 

Fig. 10: Confusion matrix obtained using MLP classifier. 
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Fig. 11: ROC graph obtained using MLP classifier. 
 

Fig. 12: GUI of proposed head gesture recognition system after 

applying model building and training using DenseNet with RFC 

model. 

 

 

Fig. 13: ROC graph obtained using proposed DenseNet with RFC 

model. 

Fig. 14: Confusion matrix obtained using proposed DenseNEt with 

RFC model. 
 

Fig. 15: Performance comparison graph of existing perceptron, MLP, 

and proposed DenseNet with RFC models. 
 

Fig. 16: Sample predictions on test data using proposed DenseNet 

with RFC model. 

Fig. 12 presents the GUI after the more advanced DenseNet with 

Random Forest Classifier (RFC) model has been trained. The GUI 

shows logs related to the deep neural network’s training process and 

the subsequent extraction of features. It then displays performance 

metrics obtained after integrating the RFC, indicating that the hybrid 

model has been executed successfully and is ready to generate 

predictions. 
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Fig. 13 depicts ROC graph, the performance of the proposed DenseNet 

with RFC model is visualized. The curve and the corresponding AUC 

value reflect the model’s enhanced capability in classifying head 

gestures by leveraging both deep feature extraction and ensemble 

learning. The graph typically shows a steeper curve and higher AUC, 

demonstrating improved discriminative power. 

Fig. 14 demonstrate the confusion matrix, presented as a heatmap, 

details the performance of the DenseNet with RFC model. It provides 

insights into the model’s prediction accuracy across different gesture 

categories, highlighting areas of strength and potential confusion. The 

matrix is expected to show fewer misclassifications compared to the 

simpler models, emphasizing the benefits of the hybrid approach. 

Fig.15 consolidates the performance metrics of all three models into a 

single comparative graph. It typically includes bar charts or line graphs 

that display metrics such as accuracy, precision, recall, and F1-score 

for each model. This visual comparison clearly shows the incremental 

improvements gained by using more complex architectures, with the 

DenseNet with RFC model usually outperforming the Perceptron and 

MLP classifiers. 

Fig. 16 shows example predictions made on test data by the DenseNet 

with RFC model. This may include a table or a visual overlay on the 

test dataset, where the actual gesture labels are compared with the 

model’s predictions. It serves as a practical demonstration of the 

model’s real-world applicability, validating the system’s ability to 

correctly classify new, unseen head gesture data. 

 

 
Algorith 

m Name 

Accuracy Precision Recall f1-score 

Perceptro 

n 

Classifier 

24.683384 

% 

38.479845 

% 

24.595878 

% 

20.841534 

% 

MLP 

Classifier 

43.953901 

% 

63.451410 

% 

43.873357 

% 

44.213627 

% 

DenseNe 

t with 

RFC 
Model 

96.134752 

% 

96.128814 

% 

96.131997 

% 

96.122536 

% 

Table 1: Summarizing the performance metrics for the three 

models. 

• Accuracy: This metric indicates the overall percentage of 

correct predictions out of all predictions made by the model. 

For example, the Proposed DenseNet+RFC Model achieved 

an accuracy of approximately 96.13%, meaning it correctly 

classified 96.13% of the input samples. In contrast, the 

simpler Perceptron classifier had a much lower accuracy of 

around 24.68%, suggesting it struggles with the complexity 

of the head gesture data. 

• Precision: Precision measures the proportion of positive 

identifications that were actually correct. A high precision 

value (such as the 96.13% for the DenseNet+RFC model) 

indicates that when the model predicts a certain gesture, it is 

highly likely to be correct. The Perceptron, with a precision 

of about 38.48%, shows a higher rate of false positives 

compared to the more sophisticated models. 

• Recall: Recall (or sensitivity) quantifies the proportion of 

actual positives that were correctly identified. The 
DenseNet+RFC model’s recall of 96.13% means that it 
successfully captures nearly all instances of each gesture 
class, while the lower recall values of the Perceptron and 

MLP models indicate they are missing a significant number 

of true gesture instances. 

• f1-score: The f1-score is the harmonic mean of precision and 

recall, providing a balance between the two. It is particularly 

useful when dealing with imbalanced classes. The 

DenseNet+RFC model’s f1-score of 96.12% reflects its 

superior balance between correctly predicting the gesture 

classes and minimizing false negatives and positives. In 

contrast, the Perceptron’s f1-score of around 20.84% 

highlights its overall poor performance in this regard. 

Overall, the table and corresponding explanation demonstrate how the 

proposed DenseNet+RFC model significantly outperforms both the 

Perceptron and MLP classifiers, offering much higher accuracy, 

precision, recall, and f1-score. This underscores the advantage of using 

a hybrid deep learning and ensemble approach for head gesture 

recognition. 

5. CONCLUSION 

In conclusion, the proposed head gesture recognition system has 

demonstrated significant improvements over traditional methods by 

effectively integrating advanced data preprocessing, feature extraction, 

and a multi-model machine learning framework within a user-friendly 

GUI. The system processes inertial sensor data through rigorous 

cleaning and balancing steps, enabling robust feature extraction and 

model training. Comparative experiments reveal that while a simple 

Perceptron classifier achieved an accuracy of around 24.68% and an 

MLP classifier reached approximately 43.95%, the hybrid DenseNet 

with Random Forest Classifier outperformed both by attaining an 

accuracy of about 96.13%, with corresponding high precision, recall, 

and f1-scores near 96%. These results underscore the hybrid model’s 

ability to capture complex, non-linear patterns in the data and 

significantly reduce misclassifications, thereby proving its efficacy in 

accurately recognizing head gestures. This work not only addresses the 

limitations of traditional approaches by enhancing overall system 

robustness and reliability but also paves the way for practical 

applications in interactive control, accessibility, and automotive safety, 

making it a promising solution for real-world deployment. 

The future scope includes integrating the system with real- 

time embedded platforms and exploring more advanced deep learning 

models to further enhance accuracy and robustness. Additionally, 

adapting the approach to accommodate a broader range of gestures and 

multi-modal sensor data could open new applications in interactive and 

assistive technologies. 
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